• @Wahots
    link
    29 months ago

    They have to use fuel to make adjustments in the Lagrange point, and aren’t realistically serviceable once out there. (JWST has about 10-15 years of fuel, has already taken some micrometorite damage that cannot be fixed that far out)

    There’s no indigenous metals or fuel to work with either. But there would be on other planets!

    I think having a few out there is okay, but they also need some way of cleaning up the Lagrange point so it doesn’t become cluttered with tons of satellites as well. I’d say save the Lagrange point for the uber important missions, with the more mundane stuff being planet based or orbital, where it can be safely decommissioned in atmosphere. I expect telescopes to be constantly improving every 10-30 years for the foreseeable future!

    • Sloan the Serval
      link
      2
      edit-2
      9 months ago

      Well, one thing you can do is make sure to decommission the satellite constellation when it’s reached the end of its usable life by putting it back on an intercept course with Earth by either raising or lowering its orbit. Also, radio telescopes are actually a lot less sensitive to physical damage, as their receivers work very differently to that of a telescope operating in near infrared (like JWST) or visible light (like Hubble), and have more in common with a satellite dish used for communications.

      As for the lack of access to materials in a lagrange orbit, you wouldn’t actually need that, because you don’t actually have to construct anything during the mission. The various automated spacecraft you’d be sending to construct a planet-based telescope would instead be the telescope.

      Regardless, a radio telescope designed around using a constellation of lagrange point satellites would be that kind of uber-important mission, because such a massive radio telescope array would be able to “see” in a MUCH higher resolution compared to any planet-based telescopes, and potentially further as well. As far as we know, the visual range limit of such a telescope could be the information event horizon - JWST gets VERY close to that point already. Such a massive radio telescope could record radio data to that very information event horizon. And due to how the further out you look, the further back in time what you see is due to the speed of light over such vast distances, it would be able to record radio data from as far back as the very moment of the big bang, and in unprecedented detail.