moonpiedumplings@programming.dev to Ask Lemmy@lemmy.worldEnglish · 1 day agoGive me some of your hardest riddles? (with solutions in spoilers)message-squaremessage-square70fedilinkarrow-up161arrow-down11file-text
arrow-up160arrow-down1message-squareGive me some of your hardest riddles? (with solutions in spoilers)moonpiedumplings@programming.dev to Ask Lemmy@lemmy.worldEnglish · 1 day agomessage-square70fedilinkfile-text
minus-squareDreamlandLividity@lemmy.worldlinkfedilinkarrow-up6·edit-224 hours ago Proof by induction? 1±2±3±...±n =(1+n)*n/2 plugging that into the right side of the equation to transform it: ((1+n)*n/2)^2 = (1+n)^2*n^2/4=n^2(n^2+2n+1)/4 = (n^4 + 2n^3 +n^2)/4 If this holds for n: 1^3 + 2^3 +3^3 + ... + n^3 = (n^4 + 2n^3 +n^2)/4 Then for n+1: (n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (1+n + 1)^2*(n+1)^2/4 (n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^2+4n + 4)(n^2 +2n + 1)/4 (n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^4 + 4n^3 + 4n^2 + 2n^3 + 8n^2 + 8n + n^2 + 4n + 4)/4 (n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^4 + 2n^3 + n^2)/4 + (4n^3 + 12n^2 + 12n + 4)/4 (n+1)(n^2 +2n + 1) =? n^3 + 3n^2 + 3n + 1 n^3 + 2n^2 + n + n^2 + 2n + 1 =? n^3 + 3n^2 + 3n + 1 n^3 + 3n^2 + 3n + 1 =? n^3 + 3n^2 + 3n + 1 Which is obviously true. So yes, it holds forever.
Proof by induction?
1±2±3±...±n =(1+n)*n/2
plugging that into the right side of the equation to transform it:
((1+n)*n/2)^2 = (1+n)^2*n^2/4=n^2(n^2+2n+1)/4 = (n^4 + 2n^3 +n^2)/4
If this holds for n:
1^3 + 2^3 +3^3 + ... + n^3 = (n^4 + 2n^3 +n^2)/4
Then for n+1:
(n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (1+n + 1)^2*(n+1)^2/4
(n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^2+4n + 4)(n^2 +2n + 1)/4
(n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^4 + 4n^3 + 4n^2 + 2n^3 + 8n^2 + 8n + n^2 + 4n + 4)/4
(n^4 + 2n^3 +n^2)/4 + (n+1)^3 =? (n^4 + 2n^3 + n^2)/4 + (4n^3 + 12n^2 + 12n + 4)/4
(n+1)(n^2 +2n + 1) =? n^3 + 3n^2 + 3n + 1
n^3 + 2n^2 + n + n^2 + 2n + 1 =? n^3 + 3n^2 + 3n + 1
n^3 + 3n^2 + 3n + 1 =? n^3 + 3n^2 + 3n + 1
Which is obviously true.
So yes, it holds forever.
This is the way.